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Linearized Particle Accelerator
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Most particle accelerators are based around proximity to linear 

integrable optics. The linear accelerator Hamiltonian: 

Each transverse degree of freedom is a linear oscillation with a 

time-dependent focusing. We can normalize the phase-space 

coordinates and write in terms of action-angle:

No resonances, two degrees of freedom, two action invariants.
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Aberrations on Linear Accelerator
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Particle accelerators aren’t just perfect continuous focusing:

• Discrete elements lead to time-dependence (s-dependence).

• Sextupoles for chromaticity correction.

• Octupoles for nonlinear focusing.

• Magnet field quality & fringe-field effects.

There will be many higher-order resonances, tune-shift with 

amplitude, and x-y coupling.

In the general case, there are no invariants and there is not any 

guarantee of stable motion for all initial conditions.

Leads to confined operating space called “dynamic aperture”.
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Steepness
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Nekhoroshev – Russian Math. Surveys 32:6 (1977), 1-65:

“An Exponential Estimate of the Time of Stability of Nearly 

Integrable Hamiltonian Systems”

Integrable system with a periodic perturbation:

Then action-invariants are bounded by:

over the time interval:

If H(I) meets a certain criteria called steepness.

1D steepness is given by: 

Multi-dimensional similar idea, but not simple
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Collective-Instabilities & Landau Damping
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In addition to the single-particle effects from external field, there are 

collective effects:

The beam itself generates EM fields, which interact with the 

environment and then back on the beam. Every beam mode 

represents a feedback loop that can become unstable.

These instabilities can be suppressed by either:

1. External damping system –an external kickers system which 

needs to be activated with the requisite gain and bandwidth.

2. Landau damping – an active decoherent effects from the tune-

spread of the betatron oscillation. Nonlinear focusing has an 

inherently stabilizing effect on the beam!
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New Paradigm – Nonlinear Integrable Optics
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Instead of trying to make a perfect linear system and then 

compensate all the defects, start from something more robust!

The accelerators optics should be:

2D Integrable – no resonances or dynamical chaos.

Widely Stable – no scattering trajectories or separatrices.

Strongly Nonlinear – robust to perturbations, external & collective.
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Several Methods for Nonlinear Integrable Optics
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FAST/IOTA Facility
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Fermilab AST Facility
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FAST: Fermilab Accelerator Science and Technology

• 300 MeV electron superconducting linac

• 2.5 MeV proton normal-conducting RFQ (early 2020)

• IOTA ring for beam physics experiments 

• To be operated with either protons or electrons

IOTA: Integrable Optics Test Accelerator
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IOTA Parameters
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Integrable Optics Test Accelerator

Modular, Flexible, Cost-effective Accelerator
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Integrable Optics Test Accelerator
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Nonlinear Integrable Optics Experiments:

1. Nonlinear Elliptic Magnet for Danilov-Nagaitsev Type

2. Octupole String for Quasi-Integrable Henon-Heiles Type

3. Electron Lens for Integrable Optics
- Polar-Coordinate Potential

- McMillan-Type Thin Nonlinear Kick

Other FAST/IOTA Experiments:

• Quantum Effects in Single-Electron Storage

• Optical Stochastic Cooling for Bright Electron Beams

• Electron Column/Lens Space-charge Compensation

• FAST Electron Linac as ILC prototype

• Inverse Compton Scattering X-Ray Source
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Nonlinear Magnets

for Integrable Optics
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Remove Time-Dependence: H becomes invariant
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Continuous focusing linear accelerator with equal focusing in 

horizontal and vertical, then add some potential V:

Transform to normalized coordinates:

Chose V to remove all time-dependence (s, ψ dependence):

The nonlinear potential V varies longitudinally with beam size.
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Remove Time-Dependence: H becomes invariant
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But we started with a continuous focusing linear accelerator with 

equal horizontal and vertical optics…

Instead, make a conventional linear accelerator but with nπ phase-

advance and matched beta functions, followed by a nonlinear insert:

In the nonlinear insert, the 

potentials scales with the 

beam.

In the T-insert, the beam 

oscillates linearly and the 

betatron phase is the same 

at start and end, in both 

planes.
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Octupole-String
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If we prepare a generic nonlinear potential this way, for example 

octupoles, there will generally be only invariant of motion.

We may have removed time-dependent resonances, but there will 

still be coupling resonances between the transverse degrees of 

freedom. We term this quasi-integrable or Henon-Heiles-type.
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Performance of Octupole Henon-Heiles

Integrable Particle Dynamics in Accelerators | Jan 2019 USPAS 17 1/30/2019

What is the tune-spread within the dynamic aperture?
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Second-Invariant
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If we know there is a second invariant I for Hamiltonian H,

it is easy to verify it:

So we can assume a generic form of I, impose [H,I] = 0  ,

and see we can find a usable solution:

wlog,

a=1:



Bertrand-Darboux Equation:

The solution emerges from elliptic coordinates:
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Second-Invariant, elliptic
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Second-Invariant with magnets
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If we want a potential we can implement with magnets, we have to 

further impose Laplace’s Equation:

If there is any dipole-term, this will immediately generate dispersion, 

so we should further impose: 

Linear term:

Nonlinear term:
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Nonlinear Elliptic Potential
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Segmented Elliptic Magnet
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Nonlinear insert:

IOTA Lattice with NL Insert
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Landau Damping vs. Antidamper

Emulate a collective instability with an anti-damper:

Nonlinear element reduces max centroid oscillation by factor of 50 

and reduces particle loss by factor 100.
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IOTA with sextupoles IOTA with nonlinear insert
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Damping Performance vs. Octupole
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For an initially displaced beam:
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Damping Animation
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Nonlinear Electron Lens

for Integrable Optics
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Second-Invariant, Polar coordinates
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c=0:

Imposing Laplace’s equation may be too constraining:

So look for solutions without Laplace’s equation.

Use an electron lens to make an arbitrary circular potential f(r).



1. Intense electron beam created at high voltage.

2. E-beam profile shaped by electrodes.

3. E-beam transported with strong solenoid.

4. Electrons collected after single pass.

Electron Lens

Stancari
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Round, Thick-Lens Kick

Following the previous recipe, the electron beam should be tapered 

to match the proton beam size. But this is may be difficult.

Instead, use the solenoid to maintain constant beta functions of the 

proton beam and then apply a constant electron beam.

The electron beam distribution

can be any round distribution.

e.g. Gaussian profile
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McMillan-Type Thin Kick

We can also use the electron lens to implement the McMillan Map:

The electron lens should be a thin kick, β > L
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Implementation in IOTA Ring



Implementation in IOTA Ring
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Simulation HL-LHC with Electron Lens Landau Damping

Shiltsev PRL 2017
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Several Methods for Nonlinear Integrable Optics
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